Mac Williams identities for linear codes as Riemann-Roch conditions
نویسندگان
چکیده
The present note establishes the equivalence of Mac Williams identities for linear codes C,C⊥ ⊂ Fq with the Polarized Riemann-Roch Conditions for their ζfunctions. It provides some averaging and probabilistic interpretations of the coefficients of Duursma’s reduced polynomial of C.
منابع مشابه
Mac Williams identities for linear codes as polarized Riemann-Roch conditions
The present note establishes the equivalence of Mac Williams identities for an additive code C and its dual C to Polarized Riemann-Roch Conditions on their ζ-functions. In such a way, the duality of additive codes appears to be a polarized form of the Serre duality on a smooth irreducible projective curve.
متن کاملConstant dimension codes from Riemann-Roch spaces
Some families of constant dimension codes arising from Riemann-Roch spaces associated to particular divisors of a curve X are constructed. These families are generalizations of the one constructed by Hansen [7].
متن کاملRiemann-roch Theory on Finite Sets
In [1] M. Baker and S. Norine developed a theory of divisors and linear systems on graphs, and proved a Riemann-Roch Theorem for these objects (conceived as integer-valued functions on the vertices). In [2] and [3] the authors generalized these concepts to real-valued functions, and proved a corresponding Riemann-Roch Theorem in that setting, showing that it implied the Baker-Norine result. In ...
متن کاملRiemann-Roch Spaces and Linear Network Codes
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal number of points for curves of their respective genera. Linear network coding transmits information in ...
متن کاملExplicit bases for Riemann-Roch spaces of the extended norm-trace function field, with applications AG codes and Weierstrass semigroups
The extended norm-trace function field is a generalization of the Hermitian and norm-trace function fields which are of importance in coding theory. In this paper, we provide explicit bases for certain Riemann-Roch spaces on the extended norm-trace function field. These bases provide explicit generator and parity check matrices for algebraic geometry codes CL ( D, aP∞ + ∑ β∈B aβP0β ) on the ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 57 شماره
صفحات -
تاریخ انتشار 2017